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Abstract A new class of exclusion type processes acting in continuum with synchronous
updating is introduced and studied. Ergodic averages of particle velocities are obtained and
their connections to other statistical quantities, in particular to the particle density (the so
called Fundamental Diagram) is analyzed rigorously. The main technical tool is a “dynam-
ical” coupling applied in a nonstandard fashion: we do not prove the existence of the suc-
cessful coupling (which even might not hold) but instead use its presence/absence as an
important diagnostic tool. Despite that this approach cannot be applied to lattice systems di-
rectly, it allows to obtain new results for the lattice systems embedding them to the systems
in continuum. Applications to the traffic flows modelling are discussed as well.
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1 Introduction

The classical simple exclusion process is a Markov process that describes nearest-neighbor
random walks of a collection of particles on the one-dimensional infinite1 integer lattice.
Particles interact through the hard core exclusion rule, which means that at most one particle
is allowed at each site. This seemingly very particular process introduced first in 1970 by
Frank Spitzer [20] appears naturally in a very broad list of scientific fields starting from
various models of traffic flows [5, 6, 10, 13, 16], molecular motors and protein synthesis in
biology (see e.g. [21]), surface growth or percolation processes in physics (see [8, 18] for a
review), and up to the analysis of Young diagrams in Representation Theory [9].

1Or finite with periodic boundary conditions.
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Fig. 1 TASEP in continuum

Qualitatively from the point of view of the order of particle interactions there are two
principally different types of exclusion processes: with synchronous and asynchronous up-
dating rules. In the latter case at each moment of time a.s. at most one particle may move
and hence only a single interaction may take place. This is the main model considered in
the mathematical literature (see e.g. [14, 17, 20, 22] for a general account and [1, 11, 19] for
recent results), and indeed, the assumption about the asynchronous updating is quite natural
in the continuous time setting. The synchronous updating means that all particles are trying
to move simultaneously and hence an arbitrary large (and even infinite) number of interac-
tions may occur at the same time. This makes the analysis of the synchronous updating case
much more difficult, but this is what happens in the discrete time case.2 This case is much
less studied, but still there are a few results describing ergodic properties of such processes
[3, 5–7, 10, 13, 16].

Our aim is to introduce and study the synchronous updating version of the exclusion
process in continuum. Note that recently some other interacting particle processes were
generalized from lattice to continuum case (see e.g. [12, 18]).

A configuration x := {xi}i∈Z is a bi-infinite sequence of real numbers xi ∈ R interpreted
as centers of particles represented by balls of radius r ≥ 0 (see Fig. 1) and ordered with
respect to their positions (i.e. . . . ≤ x−1 ≤ x0 ≤ x1 ≤ . . .). To emphasize the dependence on
the radius r ≥ 0 we shall use the notation x(r). We say that a configuration x(r) is admissible
if

xi(r) + r ≤ xi+1(r) − r ∀i ∈ Z

(the corresponding balls may only touch each other) and denote by X(r) the space of ad-
missible configurations.

The dynamics will be defined as follows. We assume given a collection of (possibly
random) values {vt

i }i,t , where i, t ∈ Z and t ≥ 0; conditions on this collection will be given
shortly. For a trivial configuration consisting of a single particle located at time t ≥ 0 at
xt

0 ∈ R (i.e. xt ≡ {xt
0}) the dynamics is defined as

xt+1
0 := xt

0 + vt
0,

and thus vt
0 may be interpreted as a local velocity at time t , i.e. this is simply a random walk

on R. To generalize this trivial setting for an infinite configuration x(r) ∈ X(r) we again
interpret a (be-infinite on i ∈ Z) sequence {vt

i }i,t as local velocities for particles in xt (r)

performing random walks conditioned to the order preservation and the hard core exclusion
rule.

To simplify presentation we restrict ourselves here to the case of nonnegative local ve-
locities postponing the discussion of the general case when the local velocities take both
positive and negative signs to Sect. 6. The point is that the formulations in the latter case

2If one do not consider some “artificial” updating rules like a sequential or random updating.
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are becoming much more involved, but the results and arguments work with only very slight
changes.

Since only nonnegative local velocities are considered the hard core exclusion rule means
that the admissibility condition breaks down for the i-th particle at time t ∈ Z+ if and only
if the inequality

xt
i (r) + vt

i + r ≤ xt
i+1(r) − r

does not hold. If this happens we say that there is a conflict between the particles i and i +1,
and to resolve it one applies a normalizing construction

vt
i → N (vt

i , x
t (r)).

After the normalization the positions of particles are calculated according to the rule

xt+1
i (r) := xt

i (r) + N (vt
i , x

t (r)) ∀i.

In what follows we always assume3 that ∀i, t N (vt
i , x

t (r)) ∈ [0, vt
i ] (to simplify notation

by the segment [a, b] we mean [min(a, b),max(a, b)]) and consider only nonanticipating
normalizations4 satisfying the condition that in the case of the conflict of the i-th particle
with the j -th one5 at time t the position of the i-th particle at the next moment of time
xt+1

i (r) ∈ [xt
i (r), x

t
j (r)].

The normalization may be done in a number of ways and we restrict ourselves to two
extreme constructions. The first of them we call strong normalization (notation Ns(·, ·)) and
according to the name we reject (nullify) the velocity leading to the conflict. The second
construction we call weak normalization (notation Nw(·, ·)) and in this case we modify the
conflicting velocity to allow the particle to move as far as possible. In terms of gaps

�i(x
t (r)) ≡ �t

i := xt
i+1(r) − xt

i (r) − 2r

between particles in the configuration xt the normalization procedures are written as follows:

Ns(v
t
i , x

t (r)) :=
{

vt
i if vt

i ≤ �t
i

0 otherwise,
Nw(vt

i , x
t (r)) :=

{
vt

i if vt
i ≤ �t

i

�t
i otherwise.

Figure 2 demonstrates possible positions of particles at two consecutive moments of time t

and t +1 for the cases of weak (a–c) and strong (a’–c’) normalizations. Despite appearances
these two normalization procedures lead to a very different limit behavior of the correspond-
ing particle systems. The simplest example (existing even in the continuous time case) is the
situation when vt

i ≡ v ∀i, t and the gaps between particles in x are smaller than v. Then
under the strong normalization no motion is allowed, while the weak normalization leads
to the well defined motion—the exchange of gaps between particles. Other normalization
procedures together with more general assumptions about the dynamics will be discussed in
Sect. 7.

3This formulation allows to consider velocities of both signs which we shall do in Sect. 6 and simply means
that the normalized velocity has the same direction as the original one and cannot exceed it on modulus.
4In Sect. 7 we shall show that the violation of this condition makes the system to be not well posed.
5For nonnegative velocities j ≡ i + 1, but in general j ∈ {i − 1, i + 1}.
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Fig. 2 Positions of particles at
time t, t + 1 in cases of weak
(a–c) and strong (a’–c’)
normalizations. Local particle
velocities are shown by vectors.
The cases (c, c’) correspond to
negative velocities and will be
discussed in Sect. 6

Observe that any two particle configurations x(r), x́(ŕ) having the same sequence of
gaps � := {�i} may be transformed to each other by a one-to-one map

x́i (ŕ) = ϕ(xi(r)) := xi(r) − 2i(r − ŕ) ∀i ∈ Z. (1.1)

Since the normalization procedures that we consider depend only on the gaps between par-
ticles it is enough to study the case r = 0. On the other hand, if r = 1/2, x0

i (r) ∈ Z ∀i ∈ Z

and vt
i ∈ Z ∀i ∈ Z, t ≥ 0 then xt

i (r) ∈ Z ∀i ∈ Z, t ≥ 0 which means that we get a lattice
particle system. Thus our results lead to a completely new approach to the analysis of lattice
systems as well. Note however that in the case r = 0 an arbitrary number of particles may
share the same spatial position which is prohibited in the lattice case.

Due to the observation above we shall study in detail only the case r = 0 since the cor-
responding results for any r > 0 are readily available through the transformation (1.1), see
e.g. specific calculations for densities and velocities in Lemmas 2.1, 2.4 and Corollaries 4.5,
5.3.

To simplify notation we shall use the convention x(r) ≡ x0(r), x ≡ x0(0) and similarly
X ≡ X(0).

Of course, without some specific assumptions on the structure of local velocities {vt
i }i,t

no interesting results are possible. We assume that vt
i ∈ [0, v] ∀i ∈ Z, t ∈ Z0 := Z+ ∪ {0}

and one of the following seemingly opposite assumptions holds:

(a) vt
i ≡ vt

0 ∀i ∈ Z, t ∈ Z0 and ∃v̄(γ ) := limt→∞ 1
t

∑t−1
s=0 min(vs

0, γ ) ∀γ > 0 (a.s.);
(b) {vt

i } are i.i.d. (both in i and t ) random variables.

Note that the intersection between the sets of local velocities satisfying the assumptions
(a) and (b) contains an important case of pure deterministic velocities: vt

i ≡ v ∀i ∈ Z,
t ∈ Z0. As we shall show properties of systems with local velocities satisfying to the as-
sumption (a) are close to the pure deterministic setting. Therefore we refer to the setting (a)
as deterministic6 and to the setting (b) as random.

It is of interest that in the seemingly simplest purely deterministic setting vt
i ≡ v

∀i ∈ Z, t ∈ Z0 the behavior of the corresponding deterministic dynamical system describing
the dynamics of particle configurations is far from being trivial. In Sect. 4.3 we prove that
this system is chaotic in the sense that its topological entropy is positive (and even infinite).

To emphasize that under dynamics no creation or annihilation of particles may take place
this sort of systems is called diffusive driven systems (DDS) instead of a more general
object—interacting particle systems (IPS).

6In this case vt
0 might be a trajectory of a deterministic chaotic map f : [0,1] → [0,1], e.g. vt+1

0 :=
vf t (vt

0/v), as well as a realization of a true random Markov chain).
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The main technical tool in our analysis is a (somewhat unusual) “dynamical” coupling
construction. Despite that various couplings are widely used in the analysis of IPS, appli-
cations of our approach is very different from conventional. In particular, we do not prove
the existence of the so called successful coupling (which even might not hold) but instead
use its presence/absence as an important diagnostic tool. Remark also that typically one
uses the coupling argument to prove the uniqueness of the invariant measure and to derive
later other results from this fact. In our case there might be a very large number of ergodic
invariant measures or no invariant measures at all (recall the trivial example of a single par-
ticle performing a skewed random walk). The latter example indicates that there is another
important statistical quantity—average particles velocity that can be computed at least in
this case. (See e.g. [2] for a discussion of the average velocity in the context of Queueing
Networks.) The dynamical coupling will be used directly to find connections between the
average particle velocities and other statistical features of the systems under consideration,
in particular with the corresponding particle densities.

It is worth note that all approaches used to study lattice versions of DDS are heavily based
on the combinatorial structure of particle configurations. This structure has no counterparts
in the continuum setting under consideration. In particular the particle–vacancy symmetry
is no longer applicable in our case. This explains the need to develop a fundamentally new
techniques for the analysis of DDS in continuum. Despite this new techniques cannot be
applied directly in the lattice case, the embedding of lattice systems to the continuum setting
allows to obtain (indirectly) new results for the lattice systems as well.

The paper is organized as follows. In Sect. 2 we introduce main statistical quantities
under study: particle densities, average velocities, etc. and derive their basic properties. Sec-
tion 3 is dedicated to the main technical tool—dynamical coupling. In Sect. 4 we apply this
coupling in the weak normalization setting to prove the uniqueness of the average velocity
(Theorem 4.1) and to derive the complete Fundamental Diagram for the deterministic case
(Theorem 4.2). We calculate also the topological entropy of this process (Theorem 4.3). The
strong normalization case is considered in Sect. 5 (Theorem 5.1), while a more general set-
ting with local velocities of both signs is studied in Sect. 6 (Theorem 6.1). Finally, in Sect. 7
we discuss some generalizations of our results and applications to certain specific traffic
models.

2 Basic Properties of DDS

Here we shall study questions related to densities and velocities of DDS. To simplify nota-
tion we use the convention that the normalization N ∈ {Ns , Nw} and specify it only if this
is necessary.

By the density ρ(x, I ) of a configuration x ∈ X in a bounded segment I = [a, b] ∈ R we
mean the number of particles from x whose centers xi belong to I divided by the Lebesgue
measure |I | > 0 of the segment I . If for any sequence of nested bounded segments {In} with
|In| n→∞−→ ∞ the limit

ρ(x) := lim
n→∞ρ(x, In)

exists and does not depend on {In} we call it the density7 of the configuration x ∈ X. Oth-
erwise one considers upper and lower particle densities ρ±(x) corresponding to upper and
lower limits.

7In Sect. 7.2 we shall show that this definition may be significantly weaken in the case when all particles
move in the same direction.
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The correspondence between particle densities for configurations with r = 0 and r > 0
is given by the following statement.

Lemma 2.1 Let configurations x(r) ∈ X(r), r > 0 and x ∈ X have the same sequence of
gaps {�i}. Then ρ±(x(r)) = ρ±(x)

1+2rρ±(x)
.

Proof Due to the one-to-one correspondence (1.1) between the configurations x(r) and x,
for each segment I ⊂ R

1 which contains ρ(x, I ) · |I | particles from the configuration x, one
constructs the segment I (r) containing the same particles from the configuration x(r). The
length of this segment is equal to |I (r)| = |I | + 2r · ρ(x, I ) · |I |. Therefore

ρ(x(r), I (r)) = ρ(x, I ) · |I |
|I | + 2rρ(x, I ) · |I | = ρ(x, I )

1 + 2rρ(x, I )
.

Passing to the limit as |I | → ∞ one gets the result. �

Remark 2.2 If ∃ρ(x) < ∞ then |xn − xm|/|n − m| |n−m|→∞−→ ρ−1(x).

Lemma 2.3 The upper/lower densities ρ±(xt ) are preserved by dynamics, i.e. ρ±(xt ) =
ρ±(xt+1) ∀t ∈ Z0.

Proof For a given segment I ∈ R the number of particles from the configuration xt ∈ X

which can leave it during the next time step cannot exceed 1 and the number of particles
which can enter this segment also cannot exceed 1. Thus the total change of the number of
particles in I cannot exceed 1, because if a particle leaves the segment through one of its
ends no other particle can enter through this end. Therefore

|ρ(xt , I ) − ρ(xt+1, I )| · |I | ≤ 1

which implies the claim. �

By the (average) velocity of the i-th particle in the configuration x ∈ X at time t > 0 we
mean

V (x, i, t) := 1

t

t−1∑
s=0

N (vs
i , x

s) ≡ (xt
i − x0

i )/t.

If the limit

V (x, i) := lim
t→∞ V (x, i, t)

exists we call it the (average) velocity of the i-th particle. Otherwise one considers upper
and lower particle velocities V±(x, i).

The correspondence between average particle velocities for configurations with r = 0
and r > 0 is even simpler than for densities.

Lemma 2.4 Let configurations x(r) ∈ X(r), r > 0 and x ∈ X have the same sequence of
gaps {�i}. Then ∀i, t V (x(r), i, t) = V (x, i, t) for a given collection of local velocities
{vt

i }i,t .
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Proof Observe that the motion of particles depends only on the local velocities and the
sequence of gaps. Thus at any time t ≥ 0 the sequence of gaps being changing in time is still
the same for both configurations x(r) and x. Therefore

N (vt
i , x

t (r)) ≡ N (vt
i , x

t ) ∀i, t

which yields the claim. �

Lemma 2.5 Let x ∈ X then |V (x, j, t) − V (x, i, t)| t→∞−→ 0 a.s. ∀i, j ∈ Z.

Proof It is enough to prove this result for j = i + 1. Consider the difference between (aver-
age) velocities of consecutive particles

V (x, i + 1, t) − V (x, i, t) = xt
i+1 − x0

i+1

t
− xt

i − x0
i

t

= xt
i+1 − xt

i

t
− x0

i+1 − x0
i

t

= �t
i/t − �0

i /t.

The last term vanishes as t → ∞ and it is enough to show that the same happens with �t
i/t .

Consider first the deterministic setting (i.e. vt
i ≡ vt

0) and show that8 ∀i, t

�t
i ≤

{
max(v,�0

i ) if N = Nw

max(2v,�0
i ) if N = Ns .

(2.1)

Obviously this is true for t = 0. Assume that this inequality holds up to time t ∈ Z0 and
consider the moment t + 1. There might be two possibilities:

(a) �t
i ≥ vt

0. Then N (vt
0, x

t ) = vt
0 and

�t+1
i = �t

i − N (vt
i , x

t ) + N (vt
i+1, x

t ) ≤ �t
i − vt

0 + vt
0 = �t

i ≤ max(v,�0
i )

by the assumption.
(b) �t

i < vt
0. Then Nw(vt

0, x
t ) = �t

i and Ns(v
t
0, x

t ) = 0. Therefore

�t+1
i = �t

i − �t
i + N (vt

i+1, x
t ) ≤ v ≤ max(v,�0

i ) if N = Nw,

�t+1
i = �t

i − 0 + N (vt
i+1, x

t ) ≤ 2v if N = Ns .

Thus in the deterministic setting the gaps are uniformly bounded in time and hence

�t
i/t

t→∞−→ 0.
Analysis of the random setting is much more involved since the gaps between particles

in principle may grow with time and become arbitrary large but this may happen only very
slowly. To estimate from above the value of the i-th gap �t

i we drop from the consideration
all particles except the i-th and (i + 1)-th (preserving for all t ∈ Z0 the velocities {vt

i , v
t
i+1}t )

8If vt
0 takes both positive and negative values then �t

i
≤ max(4v,�0

i
).
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and denote the resulting configuration by x̃t := {x̃t
i , x̃

t
i+1} and the gap between this pair of

particles by �̃t
i . We have

�t+1
i := �t

i − N (vt
i , x

t ) + N (vt
i+1, x

t ),

�̃t+1
i := �̃t

i − N (vt
i , x̃

t ) + N (vt
i+1, x̃

t ) = �̃t
i − N (vt

i , x̃
t ) + vt

i+1.

The comparison between �t
i and �̃t

i will be done by induction separately for the weak and
strong normalizations.

First let us prove that �̃t
i ≥ �t

i if N = Nw . At time t = 0 obviously �̃0
i = �0

i . Assume
that �̃t

i ≥ �t
i for some t ∈ Z+. Clearly,

0 ≤ N (vt
i+1, x

t ) ≤ vt
i+1.

For vt
i there might be two possibilities:

(a) vt
i ≤ �t

i . Then N (vt
i , x

t ) = N (vt
i , x̃

t ) = vt
i and hence

�̃t+1
i = �̃t

i − vt
i + vt

i+1 ≥ �t − vt
i + vt

i+1 = �t+1.

(b) vt
i > �t

i . Then Nw(vt
i , x

t ) = �t
i , Nw(vt

i , x̃
t ) ≥ �t

i and hence

�̃t+1
i = �̃t

i − Nw(vt
i , x̃

t ) + vt
i+1 ≥ vt

i+1 = �t+1
i .

If N = Ns a weaker estimate �̃t
i + v ≥ �t

i takes place. Considering again the same
possibilities we see that the cases t = 0 and (a) hold without any changes, but the case (b)
should be rewritten.

(b’) vt
i > �t

i . Then Ns(v
t
i , x

t ) = 0,

Ns(v
t
i , x̃

t ) =
{

0 if vt
i > �̃t

i

�̃t
i if vt

i ≤ �̃t
i

,

and hence Ns(v
t
i , x̃

t ) ≥ Ns(v
t
i , x

t ). Thus

�̃t+1
i = �̃t

i − Ns(v
t
i , x̃

t ) + vt
i+1

≥ �t
i − v − Ns(v

t
i , x

t ) + vt
i+1 − (Ns(v

t
i , x̃

t ) − Ns(v
t
i , x̃

t )) ≥ �t+1
i − v.

Consider now the behavior of �̃t
i as a function of time t . If �̃t

i ≥ v we get vt
i ≤ �̃t

i

and hence N (vt
i , x

t ) = vt
i , which implies that outside of the region [0, v] the sequence �̃t

i

behave as a spatially homogeneous reflected at 0 random walk with i.i.d. symmetric incre-
ments vt

i+1 − vt
i . Thus the mathematical expectation E(�̃t

i) cannot exceed9 2v and hence by
Chebyshev inequality the probability

P (�̃t
i/t ≥ ε) ≤ 1

ε
E(�̃t

i/t) ≤ 2v

tε

t→∞−→ 0,

which finishes the proof. �

Corollary 2.6 The upper and lower particle velocities V±(x, i) do not depend on i (but
might be random).

94v if local velocities take both positive and negative values.
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3 Coupling

Recall that a coupling of two Markov chains xt and yt acting on the space X is an arrange-
ment of a pair of processes on a common probability space to facilitate their direct com-
parison, namely this is a pairs process (xt , yt ) defined on the direct product space X × X

satisfying the assumptions

P ((xt , yt ) ∈ A × X) = P (xt ∈ A) and P ((xt , yt ) ∈ X × A) = P (yt ∈ A)

for any measurable subset A ⊆ X, i.e. the projections behave as the individual processes.
Let xt , x́t be two copies of Markov chains, describing the DDS which we consider

throughout the paper. Typically in continuous time interacting lattice particle systems one
uses (see e.g. [14]) an equal coupling (pairing) when particles sharing the same sites in the
copies xt , x́t are considered to be paired and all choices of their velocities are assumed to be
identical. This sort of coupling works rather well for continuous time systems when only a
single particle may move at a given moment of time. In the discrete time case the situation
is much more complicated since an arbitrary number of particles may move simultaneously
and thus it is possible that the particles of the processes xt , x́t pass each other and never
share the same positions. In fact, this difficulty is not really crucial and can be cured under
some simple technical assumptions. A more important obstacle is that if a pair is created and
only one of its members is blocked by an unpaired particle, then due to the simultaneous mo-
tion of the blocking unpaired particle and the non-blocked particle belonging to the pair the
following situation may happen: •◦• −→ ◦ ◦◦ . Thus the old pair will be destroyed but no new
pair will be created under the equal pairing construction. Here and in the sequel we use a
diagrammatic representation for coupled configurations, where paired particles are denoted
by black circles and unpaired ones by open circles, and use the upper line of the diagram for
the x-particles (i.e. particles from the x-process) and the lower line for the x́-particles.

To deal with this obstacle we introduce a dynamical10 coupling, a very preliminary ver-
sion of which was described in [7] for the lattice case and was inspired by the idea proposed
by L. Gray for the simplest discrete time lattice TASEP (unpublished). It is worth mention
also the coupling proposed for the lattice continuous time case by O. Angel (see [1, 11]).
As we shall show an important advantage of the dynamical coupling with respect to the An-
gel’s construction is that the former guarantees that the distances between mutually paired
particles are uniformly bounded.11

By the dynamical coupling of the processes xt , x́t we mean a gradual pairing of close
enough particles belonging to the opposite processes satisfying the following assumptions:

(A1) At t = 0 all particles are assumed to be unpaired. Velocities of mutually paired parti-
cles are identical.

(A2) Once being created a pair of particles remains present12 for any moment of time in the
future, however at different moments of time the roles of the pair’s members may be
played by different particles.

10The word “dynamical” is meant to emphasize that the mutual arrangement of particles in pairs may change
with time under dynamics in distinction to the conventual equal coupling (where the particles have coinciding
positions).
11In the Angel’s construction the distances may grow to infinity.
12Starting from the moment when a pair is created we consider it as an entity independently on the possible
change of particles forming it.
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Fig. 3 Pairing of particles. Black circles corresponds to paired particles and open circles to defects. The
paired particles are connected by straight lines. At time t the particles i and j are paired, while at time t + 1
the x-particle i becomes unpaired and the x́-particle j becomes paired with the x-particle i +1. The unpaired
initially particles i + 2 and j + 1 become paired at time t + 1

(A3) A particle overtaking during one time step of the dynamics some unpaired particles
from the opposite process becomes paired with one of them.

According to (A1)–(A3) particles from the same pair move synchronously until either
the admissibility condition breaks down for only one of the particles (which means that its
movement is blocked by another particle) or one of the members of the pair is swapped with
an unpaired particle from the same process (see Fig. 3 for the case of the weak normal-
ization). It is convenient to think about the coupled process as a “gas” of single (unpaired)
particles and “dumbbells” (pairs). A previously paired particle may inherit the role of the un-
paired one from one of its neighbors. In order to keep track of positions of unpaired particles
we shall refer to them as x- and x́-defects depending on the process they belong.

There are a number of ways to realize the dynamical coupling (in particular, using only
the idea of the particle’s overtaking). To demonstrate the flexibility of our approach we
describe a different construction. Note that in the sequel we shall use only the properties
(A1)–(A3) and the proofs will not depend on other details of the coupling.

By the x-triple ( ◦ •• or • ◦•) in the coupled process (xt , x́t ) we mean two mutually paired
particles and a x-defect located in the segment between them, whose index differs by one
from the index of the paired x-particle. The x́-triple (•◦ • or •• ◦ ) is defined similarly.

Two pairs of particles are said to cross each other if straight lines connecting positions
of particles belonging to the same pair intersect, e.g. • �

� •, where particles belonging to the
same pair are marked similarly.

A x-defect at xt
i together with the closest13 x́-defect at x́t

j ( ◦◦ or ◦◦) are said to be a d-pair
if |xt

i − x́t
j | < v, this pair of defects does not cross with any mutually paired particles, and

the open segment (xt
i , x́

t
j ) does not contain any other defects. We say that a d-pair (i, j) is

smaller than a d-pair (n,m) if |i| < |n|, or if i < n in case |i| = |n|. Observe that i = n but
j �= m cannot happen in distinction to i �= n but j = m.

Note that in the collection ◦ • •• • the first two x-particles together with the first x́-particle
form a x-triple despite the presence of an additional paired particle in the segment between
them. On the other hand, the collection • ◦◦ • does not contain neither triples nor d-pairs.

A pair of configurations (xt , x́t ) representing the coupled process at time t is said to be
proper if it does not contain x- or x́-triples, d-pairs, and crossing mutually paired particles.

The fact that at time t the pair of configurations (xt , x́t ) were proper does not imply that
it remains proper under dynamics at time (t + 1). In particular, triples of both types and
d-pairs may be created, e.g. •• ◦ −→ •• ◦ or ◦ ◦◦ −→ ◦◦◦, however due to the particle
order preservation crossing mutually paired particles cannot appear.

13If there are several closest x́-defects one chooses the defect with the smallest index.
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Lemma 3.1 Let a pair of configurations (xt , x́t ) have no crossing mutually paired particles.
Then among triples of the same kind there are no common elements.

Proof Direct inspection. As an illustration let us check the claim about x-triples. Assume
that two x-triples have a common x-defect (mutually paired particles cannot be common by
definition). Then this implies that the mutually paired particles in these triples either cross
each other • ◦ �

� • or the index of one of the paired x-particles differs from the index of
the common defect by more than one � • ◦

� •. The latter contradicts to the definition of the
x-triple, why the former contradicts to the assumption about the absence of crossing mutu-
ally paired particles. In the diagrams above paired particles from the 2nd triple are marked
by stars to distinguish them from the 1st triple. �

Therefore all triples of the same kind may be resolved simultaneously. This will be done
as follows. A x- or x́-triple is transformed such that the former defect is becoming paired
to the particle from another process, while another previously paired particle is becoming
unpaired: ◦ •• −→ • ◦• .

The case of a d-pair is even simpler, namely the defects “annihilate” forming mutually
paired particles: ◦◦ −→ •• . In all cases the positions of particles are preserved but their
“roles” are changing.

Finally the coupling procedure consists of the following steps:

(1) Each x-triple is recursively resolved: ◦ •• −→ • ◦• .
(2) Each x́-triple is recursively resolved: •◦ • −→ •• ◦.
(3) The smallest14 d-pair is recursively resolved: ◦◦ −→ •• .

Lemma 3.2 The coupling procedure described above is well defined, leads to the Markov-
ian coupling, and satisfies the assumptions (A1)–(A3).

Proof Let us check that this procedure is well defined. By Lemma 3.1 if a particle belongs
to a certain triple then it cannot belong to any other triple. On the other hand, segments
belonging to paired particles may overlap and resolving a x- or x́-triple one may create a
new one of the same kind:

◦ • •
• • −→ • ◦ •

• • −→ • • ◦
• • .

This explains the necessity of the recursion during the first two steps of the procedure. Note
that resolving a x-triple one cannot create a new x́-triple and vice versa (defects do not move
from one process to another).

Elements of the smallest d-pair might belong to some other d-pairs. Therefore resolving
it we might change the d-order of the remaining d-pairs. To take this into account we are
recalculating the d-order after each recursion procedure.

Consider now the motion of a given defect under the recursions in the coupling proce-
dure. Observe that the defect may move arbitrary far in any direction from its initial position
due to these recursions:

• • ··· • •
◦ • • ··· • • −→ • • ··· • •

• • ··· • • ◦.

14The ordering of d-pairs is updated after each recursion procedure.
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Nevertheless a defect cannot change its direction of movement. Assume from the con-
trary that a x-defect during two consequent steps of the recursion moved first to the right
( ◦ •• −→ • ◦• ) and then to the left (• ◦• −→ ◦ ••). This can happen only if after the first step
of the recursion the defect became a member of a new x-triple of type ◦ •• . Then the only
candidate for the role of the paired x-particle in this x-triple is the paired x-particle which
played the role of this defect on the previous recursion step. We came to the contradiction,
because a particle may belong to only one pair.

Thus the recursion is finite in the sense that each defect in a bounded spatial segment in
finite time either will stop moving or will leave this segment and never return back. Note
however that in general one cannot divide a configuration into finite pieces and deal with
them separately since a defect may move from one piece to another.

After the application of the first two steps all x- or x́-triples will be eliminated and only
d-pairs may be present. Observe now that when one resolves a d-pair neither triples nor new
defects are created. However since various d-pairs may intersect they should be resolved
separately during the last step. Additionally neither of above procedures may create crossing
pairs of mutually paired particles (since members of different triples of the same type do not
intersect and c- and d-pairs cannot cross each other).

Let the pair of configurations (xt−1, x́t−1) be proper. Then according to arguments above
after one time step of the dynamics the application of the coupling procedure, is well defined
and the pair of configurations (xt , x́t ) at time t is proper as well.

By the construction the one-time step transition probabilities for both processes xt and
x́t remain unchanged and the one-time step transition probabilities for the pairs process are
well defined. Therefore this construction defines a Markovian coupling between two copies
of the Markov chain describing our DDS.

The property (A1) holds by the construction. A pair breaks down only if one of its
members is replaced by an unpaired particle, and hence the pair as a whole survives. This
proves (A2). The property (A3) follows from the fact that under the one time step of the
dynamics of a proper pair of configurations all objects under consideration: x- and x́-triples,
and d-pairs may be created only during the particles overtaking. �

Denote by ρu(x, I ) the density of the x-defects belonging to a finite segment I , and by
ρu(x) := ρu(x,R) the upper limit of ρu(x, In) taken over all possible collections of nested
finite segments In whose lengths go to infinity.

We say that a coupling of two Markov particle processes xt , x́t is nearly successful if
the upper density of the x-defects ρu(x) vanishes with time a.s. This definition differs sig-
nificantly from the conventional definition of the successful coupling (see e.g. [14]), which
basically means that the coupled processes converge to each other in finite time.

In the random setting under some regularity assumptions the dynamical coupling turns
out to be nearly successful (the proof of this result goes out of the scope of the present paper
and will be published elsewhere), however in general especially in the deterministic setting
this property needs not hold.

Applying the notion of the nearly successful coupling to the exclusion process under
study we get the following conditional result.

Lemma 3.3 Let x, x́ ∈ X with ρ(x) = ρ(x́) > 0, and let there exist a nearly successful
coupling (xt , x́t ) such that distances between the pair members are uniformly bounded from
above by γ (t) = o(t). Then

|V (x,0, t) − V (x́,0, t)| t→∞−→ 0.
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Proof Consider an integer valued function nt which is equal to the index of the x́-particle
paired at time t > 0 with the 0-th x-particle. If the 0-th x-particle is not paired at time t we
set

nt :=
{

nt−1 if t > 0

0 if t = 0
.

To estimate the growth rate of |nt | at large t observe that nt changes its value only at
those moments of time when the 0-th x-particle meets a x́-defect. By the assumption about
the nearly successful coupling at time t � 1 the average distance between the defects at time
t is of order 1/ρu(x́

t ) while the amount of time needed for two particles separated by the
distance L to meet cannot be smaller than L/(2v). Therefore the frequency of interactions
of the 0-th x-particle with x́-defects may be estimated from above by the quantity of order

ρu(x́
t )

t→∞−→ 0, which implies nt/t
t→∞−→ 0.

Now we are ready to prove the main claim.

|V (x,0, t) − V (x́,0, t)| = |(xt
0 − x0

0 ) − (x́t
0 − x́0

0 )|/t

≤ |xt
0 − x́t

0|/t + |x0
0 − x́0

0 |/t

≤ |xt
0 − x́t

nt
|/t + |nt |

t
|x́t

nt
− x́t

0|/|nt | + |x0
0 − x́0

0 |/t.

The 1st addend can be estimated from above by γ (t)/t
t→∞−→ 0. The 2nd addend is a product

of two terms |nt |/t and |x́t
nt

− x́t
0|/|nt |. As we have shown, the 1st of them vanishes with

time. If |nt | is uniformly bounded, then the 2nd term is obviously uniformly bounded on t .
Otherwise, for large |nt | by Remark 2.2 and the density preservation the 2nd term is of
order 1/ρ(x́), which proves its uniform boundedness as well. Thus the 2nd addend goes to
0 as t → ∞. Noting finally that the last addend also vanishes with time we are getting the
result. �

4 Weak Normalization

Consider the coupled process (xt , x́t ) under the weak normalization and set Wt
ij := xt

i − x́t
j .

Lemma 4.1 The supremum of |Wt
ij | taken over all mutually paired particles is uniformly

bounded by v for any t ∈ Z0.

Proof We start at time t = 0 when there are no pairs and wait until the first of them appears.
At that moment the distance between the members in a pair cannot exceed v. Starting from
that moment the distances may grow and some new pairs may be created. Contrary to our
claim assume that there is the first moment of time t at which there is a pair of particles
located at xt

i , x́
t
j for which |xt

i − x́t
j | > v and it is the largest distance between the paired

particles at that moment of time (or one of the largest) and such that |xt−1
i − x́t−1

j | ≤ v.
According to the definition of the pairing process there are no unpaired particles between
the particles from the same pair. Therefore in order to enlarge the distance between the
particles one of them should be blocked by a particle from another pair, which contradicts
to the assumption about the maximality of the distance. �
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Lemma 4.2 Let ρ(x) = ρ(x́) and let in the coupled process ∀i, j ∃ a (random) moment of
time tij < ∞ such that xt

i > x́t
j for each t ≥ tij . Then the coupling is nearly successful.

Proof By the assumption each x-particle will overtake eventually each x́-particle located
originally to the right from its own position and thus will form a pair with it or with one
of its neighbors (if they are so close that were overtaken simultaneously). Thus the creation
of pairs is unavoidable. To show that the upper density of defects cannot remain positive,
consider how the defects move under our assumptions. Assume that at time t ≥ 0 the i-th
x-particle is paired with the j -th x́-particle. Then by Lemma 4.1 in order to overtake at time
s > t the j -th x́-particle significantly (by a distance larger than v) the i-th x-particle neces-
sarily needs to break the pairing with the j -th x́-particle. Thus by the property (A3) of the
dynamical coupling either a x-defect overtakes the j -th x́-particle: ◦ •• −→ ◦ •• −→ • ◦• ,
or the i-th x-particle overtakes a x́-defect: •• ◦ −→ •• ◦ −→ •◦ • . (Otherwise this pair
will not be broken.) Therefore during this process the x-defects move to the right while
the x́-defects move to the left. Hence they inevitably meet each other and “annihilate”. The
assumption about the equality of particle densities implies the result. �

4.1 Uniqueness of the Average Velocity

As we shall see under our assumptions even in the weak normalization case the nearly
successful coupling needs not hold (e.g. in the deterministic setting). Therefore one can-
not apply directly Lemma 3.3 in this case. Nevertheless we shall show that the absence of
coupling is not a serious obstacle and it can be used as a diagnostic tool.

Theorem 4.1 In the weak normalization case the set of limit points as t → ∞ of the se-
quence {V (x, t)}t∈Z0 depends only on the density ρ(x) assuming that the latter is well de-
fined.

Proof Consider a general DDS under the weak normalization. Let x, x́ ∈ Xρ :=
{z ∈ X : ρ(z) = ρ} be two admissible configurations of the same particle density. If one
assumes that the coupling procedure described in Sect. 3 leads to the nearly successful cou-
pling of particles in these configurations then by Lemma 4.1 the assumptions of Lemma 3.3

are satisfied and hence |V (x,0, t) − V (x́,0, t)| t→∞−→ 0 which by Lemma 2.5 implies the
claim. In general the assumption about the nearly successful coupling may not hold,15 how-
ever as we demonstrate below the pairing construction is still applicable.

Define random variables

Wt
ij := xt

i − x́t
j , i, j ∈ Z, t ∈ Z0.

Then

V (x, i, t) − V (x́, j, t) = Wt
ij /t − W 0

ij /t.

Since by Lemma 2.5 the differences between average velocities of different particles be-
longing to the same configuration vanish with time it is enough to consider only the case
i = j = 0. For Wt

00 there might be three possibilities which we study separately:

15Consider e.g. the deterministic setting with 1/ρ > 5v and the configurations xi := i/ρ and x́i := i/ρ + 2v.
Then ρ(x) = ρ(x́) = ρ, V (x) = V (x́) = v but no pair will be created.
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(a) limt→∞ Wt
00/t = 0. Then |V (x,0, t)−V (x́,0, t)| ≤ |Wt

00|/t + |W 0
00|/t

t→∞−→ 0, which by
Corollary 2.6 implies that the sets of limit points of the average velocities coincide.

(b) lim supt→∞ Wt
00/t > 0. Then ∀i ∈ Z the i-th particle of the x-process will overtake

eventually each particle of the x́-process located at time t = 0 to the right from the
point x0

i . This together with the assumption of the equality of particle densities allows
to apply Lemma 4.2 according to which the coupling is nearly successful. On the other
hand, by Lemma 4.1 the distance between mutually paired particles cannot exceed v.

Therefore by Lemma 3.3 we have |V (x,0, t) − V (x́,0, t)| t→∞−→ 0, which contradicts to
the assumption (b).

(c) lim supt→∞ Wt
00/t < 0. Changing the roles of the processes xt , x́t one reduces this case

to the case (b).

Thus only the case (a) may take place. �

4.2 Deterministic Setting

Theorem 4.2 (Fundamental Diagram) In the deterministic setting

V (x) = lim
t→∞

1

t

t−1∑
s=0

min(1/ρ, vs
0) =

{
v if ρ(x) ≤ 1/v

1/ρ(x) otherwise
(4.1)

if vt
0 ≡ v.

Proof Consider a family

X̆ρ := {x ∈ X : xi := i/ρ + ω, ω ∈ R}

of uniformly spatially distributed configurations of a given density ρ > 0. This set is forward
invariant and

xt+1
i − xt

i ≡ min(1/ρ, vt
0) ∀xt ∈ X̆ρ, i ∈ Z,

i.e. all particles in the configuration get the same normalized local velocity min(1/ρ, vt
0)

(depending in general on time t ). By the definition of the deterministic setting the limit

V (x) := lim
t→∞

1

t

t−1∑
s=0

min(1/ρ, vs
0)

is well defined. On the other hand, by Theorem 4.1 all configurations of the same density
have the same average velocity, which implies the result. �

Remark 4.3 This result looks very similar to the one known for the deterministic version of
the lattice TASEP (see [5, 16]), however the latter case is characterized by the following fea-
ture: if the density is large enough particles inevitably form dense clusters without vacancies
inside (static traffic jams). The proof above shows that the “typical” behavior of high density
configurations in continuum is different: they do form particle clusters, but these clusters are
not staying at rest but are moving at a constant velocity as an “echelon”. It is of interest that
in order to imitate such behavior a number of complicated lattice models were developed.
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Remark 4.4 The construction used in the proof is especially striking in that the same family
of uniformly spatially distributed configurations allows to study the limit dynamics in the
deterministic setting for all configurations having densities. Note that this argument cannot
be applied directly in the lattice version of DDS. Nevertheless since the “lattice configu-
rations” are included in DDS under consideration the result holds as well, which implies
completely new results for lattice TASEPs with long jumps.

Corollary 4.5 Let x(r) ∈ X(r), r > 0 and ρ(x(r)) be well defined and let ∀i, t vt
i ≡ v.

Then

V (x(r)) =
{

v if ρ(x) ≤ 1
v+2r

1/ρ(x(r)) − 2r otherwise.

In particular in the lattice setting this reads

V (x(1/2)) =
{

v if ρ(x) ≤ 1
v+1

1/ρ(x(1/2)) − 1 otherwise.

Proof By (1.1) and Lemma 2.1 for each configuration x(r) one constructs the configuration
x with the same sequence of gaps and the relation between their densities is written as

ρ(x) = ρ(x(r))

1 − 2rρ(x(r))
.

Additionally by Lemma 2.4 average velocities related to configurations with the same se-
quence of gaps coincide. Substituting ρ(x) as a function of ρ(x(r)) to (4.1) we get the
result. �

4.3 Entropy

In this section we restrict the analysis to the pure deterministic setting (i.e. vt
i ≡ v ∀i, t ).

Then our DDS is defined by a deterministic map Tv : X → X from the set of admissible
configurations into itself. Our aim is to show that this map is chaotic in the sense that its
topological entropy is infinite.16

We refer the reader to [4, 23] for detailed definitions of the topological and metric en-
tropies for deterministic dynamical systems and their properties that we use here. To avoid
difficulties related to the non-compactness of the phase space we define the topological en-
tropy of a map Tv (notation htop(Tv)) as the supremum of metric entropies of this map taken
over all probabilistic invariant measures (compare to the conventional definition of the topo-
logical entropy and its properties in [23]).

For a finite subset of integers I and a collection C := {Ci}i∈I of open intervals the subset
CI,C := {x ∈ X : xi ∈ Ci ∀i ∈ I } is called a finite cylinder.17 We endow the space of
admissible configurations X by the σ -algebra B generated by the finite cylinders defining a
topology in this space.

16Normally one says that a map is chaotic if its topological entropy is positive, so infinite value of the entropy
indicates a very high level of chaoticity.
17In general the cylinder CI,C might be empty for nonempty sets I,C.
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We start the analysis with the action of a shift-map in continuum σv : X → X defined as

(σvx)i := xi + v i ∈ Z, x ∈ X.

Lemma 4.6 The topological entropy of the shift-map in continuum σv is infinite.

Proof The preimage of a finite cylinder under the action of σv is again a finite cylinder.
Therefore this map is continuous in the topology induced by the σ -algebra B generated by
finite cylinders.

The idea of the proof is to construct an invariant subset of X on which the map σv is
isomorphic to the full shift-map in the space of sequences with a countable alphabet. The
result follows from the observation that the topological entropy of the full shift-map σ (n)

with the alphabet consisting of n elements is equal to lnn (see, e.g. [4, 23]).
Let α := {αi}i∈Z+ with αi ∈ (0, v) and let αn := {αi}n

i=1. Consider a sequence of subsets
X(n) ⊂ X consisting of all configurations x ∈ X satisfying the condition ∀k ∈ Z x2k ∈
vZ, x2k+1 ∈ x2k + αn. Then X(n) is σv-invariant and the restriction σv|X(n) is isomor-
phic to the full shift-map σ (n) with the alphabet An consisting of n elements {ai} of type
ai := {[0, αi), [αi, v)}, i.e. each element is represented by a pair of neighboring intervals.
Therefore the topological entropy of σ (n) is equal to lnn

n→∞−→ ∞. �

Another elegant (but technically difficult) way to derive this result was proposed by Boris
Gurevich. Consider a special flow St corresponding to the shift-map acting on the sequences
{�i(x)} with the roof function equal to the first nonnegative particle coordinate. This shift-
map has an infinite alphabet, hence its entropy is infinite. The special flow S1 is isomorphic
to the 1-shift of {xi}, while the entropy of the special flow can be calculated by the Abramov-
Rohlin formula.

Theorem 4.3 The topological entropy of the pure deterministic exclusion process in contin-
uum is infinite.

Proof The preimage of a finite cylinder under the action of Tv is again a finite cylinder.
Therefore this map is continuous in the topology induced by the σ -algebra B generated by
finite cylinders.

Observe that the subset X0 := {x ∈ X : �i(x) ≥ v ∀i ∈ Z} of the set of admissible config-
urations is Tv-invariant. Therefore htop(Tv) ≥ htop(Tv|X0) and for our purposes it is enough
to show that the latter is infinite. On the other hand, by the definition of the map Tv we have
Tv|X0 ≡ σv|X0.

We still cannot apply the result of Lemma 4.6 directly because in the case under consid-
eration the gaps between particles are greater or equal to v by the construction. Recall that
in the proof of Lemma 4.6 the gaps were not greater than v. To this end one sets αi ∈ (v,2v)

and modifies the definition of X(n) as follows:

x2k+1 ∈ x2k + αn ∀k ∈ Z, x2k ∈ 3vZ.

Consider the alphabet A(n) with elements of type ai := {[0, αi), [αi,3v)}. Then the
3-d power of the map Tv|X0 is isomorphic to the full shift-map σ (n) with the alphabet
A(n). Using that

3htop(Tv|X0) = htop((Tv|X0)
3) = htop(σ

(n)) = lnn

we get the result. �
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5 Strong Normalization

Recall that Wt
ij := xt

i − x́t
j for xt , x́t ∈ X, t ≥ 0.

Lemma 5.1 There exists a coupled process (xt , x́t ) such that under the strong normalization
supi,j,t W

t
ij = ∞, where the supremum is taken over all mutually paired particles.

Proof It seems that the argument applied in the weak normalization case should work
also in the case of the strong normalization. However, a close look shows that in this
case a “blocked” particle does not move to “touch” the particle conflicting with it (as it
would in the weak normalization case) but preserves its position instead. Therefore the dis-
tance between members of the same pair may become larger than the distance between
the members of the “blocking” pair which cannot happen in the weak normalization case:

• ••• • • −→ •• •• • •. Here initially distances between members in pairs do not exceed v.
The 1st pair is blocked by the 2nd pair and since the x́-member of the 1st pair cannot move
(while the x-member can) the distance between them becomes larger than v.

To demonstrate that distances between members in pairs may grow to infinity fix some
0 < ε � 1 and consider a pair of configurations x, x́ such that x0 = x́0 = 0 and �2k =
3
2 (v − ε), �2k+1 = 1

2 (v − ε), �́k = v − ε ∀k ∈ Z. After the application of the pairing pro-
cedure ∀i the i-particles in both configurations will become paired forever. On the other
hand, under dynamics x́t ≡ x́0 ∀t while the x-particles having gaps greater than v will at
constant velocity v. Therefore the distances between members in pairs will grow linearly
with time. �

This result demonstrates and partially explains a significant difference in the behavior of
DDS under weak and strong normalizations. Still, as we are going to show, at least some
features of the Fundamental Diagram are preserved. Consider the pure deterministic setting
(i.e. vt

i ≡ v). The inequality (2.1) shows that in this case gaps between particles cannot
become much larger than their initial values. The following result demonstrates that under
some mild additional assumptions (which definitely hold for high particle densities) large
gaps will disappear with time.

Lemma 5.2 Let x ∈ X be spatially periodic and we consider only the pure deterministic
setting (i.e. vt

i ≡ v). Assume that ∀t ∃j > t : �j(x
t ) < v. Then ∀i ∃ti < ∞ : �i(x

t ) <

2v ∀t ≥ ti .

Proof Observe that the spatial periodicity and its period is preserved under the pure deter-
ministic dynamics. Thus the situation is equivalent to the consideration of a finite number
(say N ) particles on a ring and to the assumption that for each t ∈ Z+ among these particles
there is a particle with a gap less than v ahead of it. Note that according to the definition of
the strong normalization Ns(v

t
i , x

t ) = 0 whenever �i(x
t ) < v. By (2.1) �i(x

t ) < 2v implies
�i(x

t+1) < 2v. Therefore new long gaps (of size larger or equal to 2v) cannot be created
and we need to show only that long gaps in the original configuration will cease to exist with
time.

By the assumption for any t there exists a short gap (shorter than v) and the corre-
sponding particle will not move during the next time step. Thus the index of the short
gap decreases by one after each time step until it “collides” with one of the long gaps:
�i(x

t ) ≥ 2v, �i+1(x
t ) < v. On the next time step �i(x

t+1) := �i(x
t ) − v. Due the spatial

periodicity the amount of time between these “collisions” is bounded and after each of them
the length of a long gap decreases by v. Thus they will disappear in finite time. �
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Fig. 4 Fundamental Diagram
(dependence of the average
velocity V on the particle density
ρ) for the pure deterministic
setting under the strong nor-
malization. The curvilinear region
H := {(ρ,V ) : 1

ρ −v ≤ V ≤ 1
ρ , V ≤ v}

corresponds to the hysteresis
phase

Theorem 5.1 Let x ∈ X and ρ(x) be well defined. Then V (x) = v if ρ(x) < 1
2v

and other-
wise for a.e. point (ρ,V ) in the curvilinear region

H := {(ρ,V ) : max(1/ρ − v,0) ≤ V ≤ min(1/ρ, v)}
(see Fig. 4) there exists a configuration x ∈ X with ρ(x) = ρ,V (x) = V , i.e. the region H

corresponds to the hysteresis.

Proof We say that particles numbered from i + 1 to i + k with i ∈ Z, k ∈ Z+ belonging
to an admissible configuration x ∈ X form a cluster of length k if all gaps between them
are strictly less than v and the gaps to surrounding particles are not smaller than v, i.e.
�i+j < v ∀j = 1,2, . . . , k − 1 and �i,�i+k ≥ v. Positions of particles belonging to the
cluster are changing with time, and leading particles leave it, while some new particles may
join the cluster from the other side. Nevertheless the length of a cluster cannot grow with
time (and new clusters cannot be born in the pure deterministic setting in distinction to the
random one) since the rate with which the leading particle leaves the cluster (one per unit
time) is at least not smaller than the rate at which new particles join the cluster from the
other side.

We start with the analysis of configurations of low density (smaller than 1
2v

) and our aim
is to show that in this case each particle achieves eventually the largest available velocity v.
Consider the motion of the 0-th particle in a configuration x ∈ X with 0 < ρ(x) < 1

2v
and

denote by t̂ the first moment of time after which this particle will not join any cluster. If

t̂ < ∞ then Ns(v
t
0) ≡ ∀t ≥ t̂ and hence V (x,0, t)

t→∞−→ v.
If t̂ = ∞ then there exists an infinite sequence of clusters of growing length such that the

0-th particle joins each of them consecutively. Let us show that this assumption contradicts
to the condition that ρ(x) < 1

2v
. We number the clusters to which the 0-th particle will join

according to their natural order starting from k = 1 and introduce the following notation:
tk—the moment of time when the 0-th particle joins the k-th cluster, nk—the number of
particles in this cluster, mk—the number of particles in the open segment between x0 and
the beginning of this cluster, and Lk—the length of the minimal segment containing the k-th
cluster and the point x0. Then

ρ(x, (x0, x0 + Lk]) = mk + nk

Lk

k→∞−→ ρ(x).

All mk particles will join the k-th cluster during the time tk and at time tk this cluster should
still exist. Therefore the distance which the 0-th particle covers during this time cannot be
smaller than Lk − mkv − nkv while its velocity cannot exceed v and thus

tkv ≥ Lk − mkv − nkv.
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On the other hand, exactly tk particles will leave the cluster during this time, i.e. mk +nk ≥ tk .
This gives

mk + nk

Lk

≥ tk

Lk

≥ Lk/v − mk − nk

Lk

= 1

v
− mk + nk

Lk

. (5.1)

Therefore

1

v
≤ 2

mk + nk

Lk

k→∞−→ 2ρ(x),

which proves the desired claim that t̂ = ∞ implies ρ(x) ≥ 1
2v

.
Consider now the case of densities greater than 1

2v
. In this case there might be two possi-

bilities:
(a) All particles will eventually achieve the largest available velocity v. Then the gaps

will become not smaller than v and hence they cannot exceed 2v (by the assumption on
the density region). Obviously this situation may take place only if ρ(x) ∈ [ 1

2v
, 1

v
] and it

corresponds to the upper branch of the Fundamental Diagram on Fig. 4.
(b) For any moment of time the are infinitely many particles having gaps smaller than v

(and hence zero normalized local velocities). Therefore at least for spatially periodic con-
figurations we can apply Lemma 5.2 which guarantees that only gaps smaller than 2v will
survive with time. Thus to study asymptotic properties it is enough to consider configura-
tions having only two types of gaps: smaller than v and between v and 2v.

Denote by X(L,m,n) the subset of admissible configurations x ∈ X being spatially peri-
odic with the spatial period of length L ∈ R+, which contains exactly m ∈ Z+ particles with
gaps belonging to the interval [0, v) and n ∈ Z+ particles with gaps belonging to the interval
[v,2v). Obviously ρ(x) = (m+n)/L. The set X(L,m,n) is invariant under dynamics (each
time when the size of a gap crosses the threshold v one “small” gap becomes large and one
“large” gap becomes “small”) which immediately yields the exact value of the average ve-
locity V (x) = nv

m+n
. On the other hand, by definition mv +n2v > L since the corresponding

gaps fill in the segment of length l and lengths of both types of gaps are smaller than v and
2v respectively. Therefore (ρ(x)L + n)v > L and hence n > L/v − ρ(x)L, which gives the
lower bound

V (x) = nv

m + n
= nv

ρ(x)L
> v

L/v − ρ(x)L

ρ(x)L
= 1/ρ(x) − v.

Observe, that choosing “small” and “large” gaps of length v − ε and 2v − ε for 0 < ε � 1
we see that the lower bound can be “almost” achieved.

The upper bound of the average velocity in the hysteresis phase (i.e. when 1
2v

< ρ(x) <
1
v
) follows from the existence of configurations with equal gaps of size larger than v for all

densities from this segment. For the case ρ(x) > 1/v the upper bound is calculated using
the opposite length estimate nv < L. Then we get

V (x) = nv

m + n
= nv

ρ(x)L
<

L

ρ(x)L
= 1/ρ(x),

which agrees with the weak normalization case.
It remains to show that the region H is filled in densely by the pairs (ρ,V ) correspond-

ing to admissible configurations. To this end one considers all possible choices of the integer
parameters n,m and lengths of the corresponding gaps to get the result. Indeed, ∀ρ ∈ ( 1

2v
, 1

v
)
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there exists an arbitrary large L such that ρL ∈ Z+. Choosing now various available com-
binations of positive integers m,n for which m + n = ρL we can approximate V with the
accuracy ∣∣∣∣V − nv

m + n

∣∣∣∣ ≤ v

ρL

L→∞−→ 0. �

Remark By Theorem 5.1 for a.e. pair (V ,ρ) ∈ H there exists an admissible configuration
x ∈ X such that ρ(x) = ρ and V (x) = V . On the other hand, it might be possible that for
some configurations having densities belonging to the hysteresis region the average velocity
is not well defined and we claim only that all limit points of finite time velocities belong to
the vertical segment corresponding to the given density.

Corollary 5.3 Let x(r) ∈ X(r), r > 0 and ρ(x(r)) be well defined and let ∀i, t vt
i ≡ v.

Then V (x) = v if ρ(x(r)) < 1
2v+2r

and otherwise for a.e. point (ρ,V ) in the curvilinear
region

H :=
{
(ρ,V ) : max

(
1

ρ − 2r
− v,0

)
≤ V ≤ min

(
1

ρ − 2r
, v

)}

there exists a configuration x(r) ∈ X(r) with ρ(x(r)) = ρ,V (x(r)) = V , i.e. the region H

corresponds to the hysteresis.

6 Local Velocities of Both Signs

A close look to the previous analysis shows that we practically did not use the property that
all particles move in the same direction, i.e. that P (vt

i ≥ 0) = 1. Now we explain the changes
necessary to study this more general case. Consider an infinite configuration x(r) ∈ X(r)

and again interpret the values {vt
i }i,t (which now may have both positive and negative signs,

but still assuming that |vt
i | ≤ v) as local velocities for particles in the configuration xt (r).

The presence of particles moving in opposite directions leads to a serious modification
of the inequalities describing the violation of the admissibility condition for the i-th local
velocity. Actually this is the main and the most serious change comparing to the case of non-
negative velocities. Now we need to take into account not only the position of the succeeding
particle, but also its velocity, as well as the corresponding quantities related to the preceding
particle. In this more general case the i-th local velocity does not break the admissibility
condition if and only if

max(xt
i−1(r), x

t
i−1(r) + vt

i−1) + r

≤ min(xt
i (r), x

t
i (r) + vt

i ) − r

< max(xt
i (r), x

t
i (r) + vt

i ) + r

≤ min(xt
i+1(r), x

t
i+1(r) + vt

i+1) − r.

If for some i ∈ Z and j ∈ {i − 1, i + 1} the corresponding inequality is not satisfied we say
that there is a conflict between the i-th particle and the j -th one and one needs to resolve it.
In terms of gaps �t

i between particles the inequalities above can be rewritten as follows:

�t
j ≥ max(vt

j , −vt
j+1, vt

j − vt
j+1), j ∈ {i − 1, i} (6.1)
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Since the dynamics again will depend only on the sequence of gaps {�t
i} between parti-

cles, for each r > 0 one can make the invertible change of variables (1.1) (described in the
Introduction) to the case of ‘point’ particles with r = 0 which we shall study further.

Exactly as in Sect. 1 the strong normalization means that we reject (nullify) all velocities
leading to a conflict, i.e.

Ns(v
t
i , x

t ) :=
{

vt
i if (6.1) holds

0 otherwise.

The situation with the weak normalization is more delicate. The way how it was defined
in Sect. 1 can be characterized as the only non-anticipating procedure allowing conflicting
particles to move simultaneously whenever possible. Following this idea we say that a nor-
malization is weak if the positions of particles at the next time step xt+1

i := xt
i + Nw(vt

i , x
t )

satisfy the conditions:

xt+1
i ∈

{ {xt
i + vt

i } if (6.1) holds
{xt

j , x
t+1
j } if ∃ a conflict of the particle i with the particle j = i ± 1.

(6.2)

The 1st line describes the case when the admissibility condition holds, while the 2nd line
shows what happens if it breaks down. Namely, if the i-th particle moves in the same direc-
tion as the j -th one then (by the non-anticipation property) the former assumes the previous
position of the latter (xt+1

i = xt
j ), otherwise the positions of the conflicting particles at time

t + 1 coincide. The latter fact is the most important property here.
If directions of all instant local velocities coincide then (6.2) defines the normalization

uniquely. However if their signs are different then (6.2) implies only that

xt+1
i = xt+1

j ∈ [xt
i , x

t
j ] ∩ [xt

i + vt
i , x

t
j + vt

j ].
Thus the set of weak normalizations is quite broad, for example it includes a random nor-
malization when two mutually conflicting particles moving in opposite directions meet at a
random point belonging to the segments described above. One can give a “natural” specific
construction of Nw normalizing local velocities in such a way that positions of particles at
the next moment of time will be the same as if the particles would move simultaneously
at continuous time with the given local velocities until the admissibility condition breaks
down:

Nw,c(v
t
i , x

t ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt
i if (6.1) holds

−�t
i−1 if �t

i−1 < −vt
i , vt

i < 0, vt
i−1 ≤ 0

�t
i if �t

i < vt
i , vt

i > 0, vt
i+1 ≥ 0

�t
i−1

vt
i−1−vt

i

× vt
i if �t

i−1 < vt
i−1 − vt

i , vt
i < 0, vt

i−1 > 0

�t
i

vt
i
−vt

i+1
× vt

i if �t
i < vt

i − vt
i+1, vt

i > 0, vt
i+1 < 0.

After this long discussion of the definition of the normalization procedure it is surprising
to find that all arguments used in the analysis of the case of positive velocities remain valid
with only very slight changes.

Lemma 6.1 The upper/lower densities ρ±(xt ) are preserved under dynamics.
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Proof One uses the same estimates as in the proof of Lemma 2.3 except that now 2 particles
may simultaneously leave or enter a given spatial segment I (instead of 1). Thus the total
change of the number of particles in I is less or equal to 2 and hence

|ρ(xt , I ) − ρ(xt+1, I )| · |I | ≤ 2. �

Lemma 6.2 Let x ∈ X then |V (x, j, t) − V (x, i, t)| t→∞−→ 0 a.s. ∀i, j ∈ Z.

Proof Again one follows the same argument as in the case of nonnegative local velocities.
The only difference is that in the analysis of the connection between �t

i and �̃t
i now one

needs to consider new cases related to negative local velocities.
Additionally here instead of the uniquely defined weak normalization we need to con-

sider an arbitrary one. If both vt
i and vt

i+1 are nonnegative we are in the situation considered
in Sect. 2. Therefore the cases (a) and (b) hold automatically. Nevertheless we formulate all
of them to prove that �̃t

i ≥ �t
i ∀t ∈ Z0:

(a) the condition (6.1) holds. Then obviously the argument used in Sect. 2 woks.
(b) vt

i > �t
i, vt

i+1 ≥ 0. Again one uses the same argument as in Sect. 2.
(c) vt

i < −�t
i−1. Then Nw(vt

i , x̃
t ) ≤ Nw(vt

i , x
t ) ≤ 0 and Nw(vt

i+1, x̃
t ) ≥ Nw(vt

i+1, x
t ).

Hence

�̃t+1
i = �̃t

i − Nw(vt
i , x̃

t ) + Nw(vt
i+1, x̃

t )

≥ �t
i − Nw(vt

i , x
t ) + Nw(vt

i+1, x
t ) = �t+1

i .

(d) vt
i ≥ 0, vt

i+1 < 0 and vt
i − vt

i+1 > �t
i . Then by definition �̃t+1

i ≥ 0 = �t+1
i .

In the strong normalization setting one also considers the same cases and proves by
induction that �̃t+1

i ≥ �t+1
i − 2v (instead of . . . − v in the situation vt

i ≥ 0). New cases are
the following

(c’) vt
i < −�t

i−1. Then

Ns(v
t
i , x̃

t ) = vt
i < −�t

i−1 = Ns(v
t
i , x

t )

and

Ns(v
t
i+1, x̃

t ) − Ns(v
t
i+1, x

t ) ≥ −2v

by the induction assumption. Hence

�̃t+1
i = �̃t

i − Ns(v
t
i , x̃

t ) + Ns(v
t
i+1, x̃

t )

> �t
i − 2v − Ns(v

t
i , x

t ) − Ns(v
t
i+1, x

t ) + 2v

= �t+1
i .

(d’) vt
i ≥ 0, vt

i+1 < 0 and �t
i < vt

i − vt
i+1 ≤ �̃t

i . Then

�̃t+1
i = �̃t

i + vt
i − vt

i+1 > �̃t
i + �t

i

≥ −2v + �t
i = −2v + �t+1

i .
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(d”) vt
i ≥ 0, vt

i+1 < 0 and �t
i < vt

i − vt
i+1 > �̃t

i . Then

�̃t+1
i = �̃t

i ≥ �t
i − 2v = �t+1

i − 2v.

Note that the difference �̃t+1
i − �t+1

i = −2v may be achieved only in the case (d’). The
continuation of the proof is exactly the same as in Sect. 2, except for the change of 2v to 4v

in the last inequality. �

Using these results and applying exactly the same arguments as in the proof of Theo-
rem 4.1 one gets the uniqueness of the average velocity.

Theorem 6.1 In the weak normalization case the set of limit points as t → ∞ of the se-
quence {V (x, t)}t∈Z0 depends only on the density ρ(x).

Theorem 6.2 (Fundamental Diagram) In the deterministic setting V (x) = limt→∞ 1
t

×∑t−1
s=0 min(1/ρ, vs

0).

Proof Since at each moment of time t ∈ Z0 the local velocities of particles coincide, the
condition (6.2) implies that

xt+1
i ∈ {xt

i + vt
0, xt

i±1}.
Thus the construction used in the proof of Theorem 4.2 remains valid in this case as well. �

7 Generalizations and Discussion

7.1 Anticipating Normalization

Throughout the paper we consider only non-anticipating normalizations. In principle one
might try to consider an anticipating normalization allowing at time t the i-th particle to
move up to the position of the (i + 1)-th particle xt+1

i+1 at time t + 1 rather than to xt
i+1.

From the first sight this makes the normalization scheme more flexible. Unfortunately the
anticipating normalization is not well posed since it turns out to be nonlocal. Namely a
single change in the sequence of local velocities (say of the i-th one) may drastically alter
the behavior of the system for particles having indices arbitrary far from the changed one
(i.e. for j � i).

7.2 One-sided Particle Densities

The density of a configuration in the way how it was defined in Sect. 2 depends sensitively on
the statistics of both left and right tails of the configuration. A close look shows that in fact
if all particles move in the same direction, say right, one needs only the information about
the corresponding (right) tail, which allows to expand significantly the set of configurations
having densities and for which our results can be applied.

For a configuration x ∈ X by a one-sided particle density we mean the limit

ρ̂(x) := lim
�→∞

ρ(x, [0, �]). (7.1)

The upper an lower one-sided densities correspond to the upper and lower limits.



194 M. Blank

Theorem 7.1 Let vt
i ≥ 0 ∀i, t . Then all results of Lemma 2.1 and Theorems 4.1, 4.2, 5.1

remain valid if one replaces the usual particle density ρ to the one-sided density ρ̂.

Proof The key observation here is that the assumption vt
i ≥ 0 ∀i, t implies that the move-

ment of a given particle in a configuration xt ∈ X depends only on particles with larger
indices. Therefore if one changes positions of all particles with negative indices the parti-
cles with positive indices will still have the same average velocity. On the other hand, by
Lemma 2.5 the average velocity does not depend on the particle index. This allows to apply
the following trick.

For each configuration x ∈ X of density ρ(x) we associate a new configuration x̂ ∈ X

defined by the relation:

x̂i :=
{

xt
i if i ≥ 0

x0 + i/ρ(x) otherwise.

Then obviously ρ̂(x) = ρ(x̂) = ρ(x).
Therefore for all purposes related to the average velocities all results valid for the con-

figuration x̂ remain valid for x as well. �

Note however that this trick does not work for the case of local velocities of both signs
(considered in Sect. 6), nor in the passive tracer analysis (Sect. 7.4). In both these situations
statistics of particles with negative indices cannot be neglected.

7.3 Nagel-Schreckenberg Traffic Flow Model

The celebrated Nagel-Schreckenberg traffic flow model introduced in [16] for the lattice
case is very similar to our case but additionally to the lattice setting it uses a bit different
dynamics. In our terms this model differs from the main model introduced in Sect. 1 by that
at each time step the previous normalized local velocity of the i-th particle is increasing by
0 < a ≤ at

i until it reaches v. One can think about at
i as an acceleration under the action

of a (random) force (see e.g. [6]). Nevertheless the formalism elaborated in the present
paper allows to study the continuum version of the Nagel-Schreckenberg model as well. In
particular, in the weak normalization case one applies basically the same arguments as in
Sects. 2, 3 and 4 since the distance between pair members cannot exceed C(v, a) ≤ v2/a.
Note however that the average velocity should be calculated in a more complicated way.
Observe also that one can consider random accelerations of both signs at

i ∈ (−∞,−a] ∪
[a,∞) which makes the model more applicable.

Mathematical formalism developed in the present paper can be applied with minimal
changes to a number of other traffic flow models (discussed in detail, e.g. in a recent review
[15]) allowing not only to study their continuum versions but also to get rigorous results in
the original lattice setting which are absent at present.

7.4 Passive Tracer

Following the idea introduced in [5] we study the dynamics of a passive tracer in the flow of
particles imitating a motion of a fast pedestrian in a slowly moving crowd of people.

Consider a pure deterministic setting (vt
i ≡ v) with the weak normalization and let T t

v x

describe the flow of particles. The passive tracer occupies the position yt ∈ R at time t and
moves all the time in the same direction. Before carrying out the next time step of the model
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describing the flow of particles, the tracer moves in its chosen direction to the closest (in this
direction) position of a particle of the configuration T t

v x. After that the next iteration of the
flow occurs, the tracer moves to its new position, etc.

To be precise, let us fix a configuration x ∈ X with ρ(x) > 0 and introduce the maps
τ±
x : R → R defined as follows:

τ+
x y := min{xi : xi > y}, τ−

x y := max{xi : xi < y}.
Then the simultaneous dynamics of the configuration of particles (describing the flow) and
the tracer is defined by the skew product of two maps—the map Tv and one of the maps τ±· ,
i.e.

(x, y) → T±(x, y) := (Tvx, τ±
x y),

acting on the extended phase space X × R. The sign + or − here corresponds to the motion
along or against the flow. We define the average (in time) velocity of the tracer

Vtr(x, t) := (yt − y0)/t,

i.e. the total distance covered by the tracer (which starts at position y0 ∈ R) up to time t ∈ Z+
with the positive sign if the tracer moves forward, and the negative sign otherwise.

Theorem 7.2 Let vt
i ≡ v ∀i, t, N ≡ Nw, x ∈ X and let x0

i+1 > x0
i ∀i ∈ Z. If the tracer

moves along the flow (i.e. in the case T+) then

Vtr(x, t)
t→∞−→ V (x) =

{
v if 0 < ρ(x) ≤ 1/v

1/ρ(x) otherwise.

If the tracer moves against the flow (case T−) then Vtr(x, t)
t→∞−→ V (x) − 1/ρ(x).

Proof The assumption x0
i+1 > x0

i ∀i ∈ Z implies that xt
i+1 > xt

i ∀i, t which allows to avoid a
pathology related to the presence of several particles at the same position. In such a situation
the tracer may “jump” through all of them in one time step. This cannot happen if r > 0 in
distinction to the case of point particles (r = 0).

In the case of T+ the tracer will run down one of the particles in the flow and will follow

it, but cannot outstrip. Thus Vtr(x, t)
t→∞−→ V (x).

Consider now the case when the tracer moves backward with respect to the flow, i.e. T−.
Each time when the tracer encounters a particle, on the next time step this particle moves in
the opposite direction and never will interfere with the movement of the tracer. Thus during
time t > 0 the tracer meets exactly t particles which gives

(−Vtr(x, t) + V (x, t))tρ(x) = t.

Therefore

Vtr(x, t) = −1/ρ(x) + V (x, t). �

Using similar arguments in the case of the strong normalization one can show that
Vtr(x, t) in the gaseous phase of the particle flow has the same asymptotic as in the weak
normalization case. Since the flow in the fluid phase demonstrates hysteresis the same phe-
nomenon is unavoidable for the passive tracer as well.
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7.5 Multidimensional Generalization

The constructions used in this paper are essentially one-dimensional. Still at least some
direct generalizations are possible. Let xt

i ∈ R
d , d ∈ Z+ and denote by (xt

i )j the j -th co-
ordinate of the d-dimensional vector xt

i . We say that a configuration xt (r) is admissible
if

max
j

((xt
i (r))j ) + r ≤ min

j
((xt

i+1(r))j ) − r ∀i ∈ Z. (7.2)

All results of Sects. 2, 3, 4.1, and 6 hold in this setting. Unfortunately the assump-
tion (7.2) implies that a natural multidimensional generalization of the notion of density
of the configuration xt (r) turns out to be equal to zero for any admissible configuration.
However densities for one-dimensional projections are well defined and for them the Fun-
damental Diagram type results are readily available.

7.6 Open Problems and Conjectures

Our construction give a very precise information about the asymptotic properties of DDS
under consideration in the deterministic setting. In the random setting we prove only the
uniqueness of the average velocity. From the results of Sect. 2 it follows that the mathe-
matical expectation of lower/upper average velocities are well defined but we are not able
to calculate them. On the other hand, we can formulate a conjecture that the limits as time
goes to infinity of finite time average velocities are deterministic. In other words, the Law
of Large Numbers is valid for the sequence of finite time average velocities.

An important question is whether the dynamical coupling of pairs of processes with equal
densities under the weak normalization is nearly successful. Let V be the common distrib-
ution of the i.i.d. local velocities. As we know in the pure deterministic setting when the
distribution V is concentrated at a single point {v} the dynamical coupling needs not to be
successful. Nevertheless we conjecture that for each nontrivial distribution V the nearly suc-
cessful coupling takes place. Moreover, the non-triviality of the distribution V should lead
to the existence and uniqueness of the translationally invariant measure of the Markov chain
described by the DDS. Proofs of results of this sort need the development of an additional
probabilistic apparatus and will be discussed elsewhere.
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